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Introduction 
 

 Many anadromous salmonid populations in the Pacific Northwest have dramatically 
declined from previously recorded levels, presumably because of degradation or loss of 
freshwater spawning and rearing habitats, restricted upstream access and increased downstream 
passage mortality due to hydroelectric dams, commercial overfishing, and negative impacts from 
non-native and hatchery fishes (Nehlsen et al. 1991, National Research Council 1996, Lee et al. 
1997).  Therefore, long-term persistence for a number of these stocks is doubtful under present 
conditions (e.g., see Emlen 1995, Ratner et al. 1997).  Although the need for remedial measures 
is clear, it is unclear which factors to focus these measures on.  That is, complexity of the life 
history pattern of these anadromous fishes, as well as variability in this pattern among different 
stocks (Nehlsen et al. 1991), adds to the uncertainty associated with attempting to identify 
limiting factors that most influence stock size and persistence.  For instance, there are a wide 
range of potential environmental conditions that anadromous fishes experience during their 
freshwater occupancy period; attempting to tease out the more influential of these factors is 
complex and difficult (Bisson et al. 1992).  In addition, efforts to properly restore anadromous 
salmonid stocks to previously high levels will require a broadscale approach that incorporates 
landscape patterns and processes (Schlosser 1991), which adds further sources of uncertainty. 
 
 A huge effort has been undertaken by various federal, state, and tribal agencies to restore 
populations of anadromous salmonids within the Columbia River Basin in the northwestern 
United States - a complex area that accomodates a variety of uses and pressures on its natural 
resources, including those that are incompatible with the needs of anadromous salmonids (Lee 
and Grant 1995).  In fact, exploitation of fish and degradation of their freshwater habitats within 
the Columbia River Basin over the past century has reduced numbers of salmon and steelhead 
from an estimated 10-16 million adults to 1.5-4 million adults (Northwest Power Planning 
Council 1986, Lee and Grant 1995).  The entire basin covers approximately 670,000 km2 in 
portions of seven states (mainly Idaho, western Montana, most of eastern Washington and 
Oregon with smaller portions in Wyoming, Utah, and Nevada) in the northwestern United States, 
as well as the southeastern part of British Columbia, Canada (Krutilla 1967).  The sheer expanse 
of this basin requires salmonid recovery plans to have a broadscale approach that accounts for a 
complex interaction of sociopolitical, socioeconomic, and ecological issues related to salmon and 
salmon habitat.  
 
 An effort is currently underway by an interagency group of scientists to develop a formal 
decision analysis for evaluating alternative hypotheses and management options for restoration 
of threatened and endangered spring/summer chinook salmon (Oncorhynchus tshawytscha), fall 
chinook salmon, and steelhead trout (Oncorhynchus mykiss) stocks in the Columbia River Basin, 
a process referred to as PATH  (Plan for Analyzing and Testing Hypotheses) (Marmorek and 
Peters 1998).  A key element in this process is identifying and (when possible) resolving sources 
of uncertainty associated with biology and life history of anadromous salmonids as related to 
recovery efforts; these sources of uncertainty have been categorized as hydrosystem, habitat, 
hatcheries, harvest, and climate (Marmorek and Peters 1998).  Although an emphasis has been 
placed on evaluating effects of different hydrosystem options on long-term persistence of 
salmonids, quality and condition of freshwater habitats may affect production in salmonids (Hunt 
1969, Scarnecchia and Bergersen 1987, Heggenes and Borgstrom 1991), which in turn would 
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affect their long-term persistence.  However, to our knowledge, relationships between large-scale 
habitat factors and production in anadromous salmon stocks have never been investigated, 
particularly at the scale of the Columbia River Basin.  Indeed, previous broadscale assessments 
of salmonid stocks in this area have been mainly limited to compiling available status/risk 
information (e.g., Nehlsen et al. 1991, Frissell 1993, Huntington et al. 1996) or using GIS data to 
evaluate and map potential salmon freshwater habitat (Lunetta et al. 1997; western Washington 
State only).  Conversely, Lee et al. (1997) attempted to rigorously quantify linkages between 
population status of fish species (based on current population data and expert judgement) and 
landscape habitat variables.  Nevertheless, there are no published studies that have rigorously 
evaluated possible linkages between broadscale habitat metrics and salmonid stock production. 
 

Here, we investigate potential relationships between various landscape habitat variables 
and estimates of fish production from 25 index stocks of spring/summer chinook salmon within 
the Columbia River Basin.  Because we use recently-described techniques for model selection 
and inference (Buckland et al. 1997, Burnham and Anderson 1998) that are probably unfamiliar 
to most ecologists, we discuss our methodological approach in some detail.   Note, however, that 
this approach may be applied more broadly to other modeling situations, and hence should be of 
general interest to ecologists. 
 
Methods 

 
 We employed a two-step modeling process to evaluate relationships between landscape 
variables and fish production in 25 index stocks of spring/summer chinook salmon within the 
Columbia River Basin (Fig. 1).  The first set of models were Ricker-type stock-recruitment 
models (Ricker 1954).  Parameter estimates from these models were used to generate a response 
variable in the second set of models, which contained landscape habitat predictor variables.  In 
the following, we describe our methodological approaches for each modeling step, including 
state-of-the-art model selection and inference techniques adapted for our needs. 
 
Developing a Set of Candidate Models 

 
 A crucial step in the modeling process is the construction of a set of candidate models 
that are ecologically meaningful (Lebreton et al. 1992, Burnham and Anderson 1998).  Based on 
results from Deriso et al. (1996), we used a stock-recruitment, regression model with stock-
specific Ricker a values as a base model from which we derived other candidate models (see 
Stock-Recruitment Models).  For the landscape habitat models, we adopted the more general 
approach recommended by Burnham and Anderson (1998), i.e., we developed a global linear 
regression model containing various class, physiographic and geophysical, and anthropogenic 
landscape variables (Table 1) that may have had important influences on fish production.  
Because of the paucity of data ( 25=n  observations) and hence the danger of over-fitting the 
model, we only used a small number of predictor variables to construct the global model.  From 
this we generated a subset of models that contained various combinations of variables we 
deemed biologically relevant. 
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Model Selection 
 
We used the small sample adjustment of Akaike’s Information Criterion (AIC; Akaike 

1973) to rank models and assess their relative plausibility given the data.  AIC is an extension of 
likelihood theory and is derived from the Kullback-Leibler distance of information theory 
(Kullback and Leibler 1951, Kullback 1997), which is a measure of how much information is 
lost when a model is used to approximate reality (Cover and Thomas 1991, Burnham and 
Anderson 1998).  AIC is defined as 

 

k
n

n 2
RSS

logAIC +




=  ,     (1) 

 
where n  is the number of observations, log  is the natural logarithm, RSS is the residual sum of 
squares (also called error sum of squares, SSE ), and k is the number of estimable parameters in 
the model (Buckland and Anderson 1998).  Equivalently, ( ) k2Llog2AIC +−= , where L is the 
likelihood function and is calculated from the maximum likelihood estimates of the model 
parameters (Buckland et al. 1997).  When 40/ <kn , Burnham and Anderson (1998) 
recommended Hurvich and Tsai’s (1989) small sample adjustment to AIC, 
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Note that AICc converges to AIC as the number of observations increases relative to the number 
of estimable parameters in a model.  In other words, as n  increases relative to k  in the second 
term in Eq. 2, the denominator increases relative to the numerator and the whole term approaches 
zero.  For large kn /  ratios, the second term essentially drops out, leaving only the AIC term.  
Hence, AICc can be routinely used in place of AIC because its adjustment to AIC is necessary 
for smaller kn / ratios, whereas it is essentially equivalent to AIC for larger kn /  ratios. 
 

AIC and its derivatives operate on the principle of parsimony (Box and Jenkins 1970), 
i.e., the highest ranked models are those that best fit the data with the fewest parameters.  The 
principle of parsimony states that there is an ideal point in the balance between increasing the 
number of parameters to decrease bias and decreasing the number of parameters to increase 
precision.  This bias/precision trade-off can be seen in the AIC formula (Eq. 1), where the first 
term rewards a better-fitting model (i.e., leading to lower bias) and the second term penalizes an 
over-parameterized model (i.e., leading to higher precision).  The smaller the sum of these two 
terms (or the smaller the AIC), the better fitting the model.  However, AIC (or AICc) is a relative 
ranking statistic.  Therefore, AIC values should be interpreted in terms of the magnitude of their 
differences among candidate models rather than the magnitude of any particular value.  A simple 
method of model ranking is to order the relative differences among AIC values by subtracting 
the lowest value from all other values (these differences are called ¢AIC values), and then 
reordering ¢AIC values and their associated models from low (i.e., 0) to high (Burnham and 
Anderson 1998).  One can interpret the relative plausibility of each model for a particular data 
set by calculating the ¢AIC model weights (see below).   Note that AIC values are specific to the 
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data set that was used to compute them, and hence those computed from different data sets are 
not comparable. 

 
We interpreted the relative plausibility of each candidate model for a specific data set by 

its ¢AICc weight, iw .  These weights are calculated as 
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where ¢AICci is the ¢AICc value for the ith model in a set of I candidate models (Buckland et al. 
1997).  Thus, the iw  sum to 1.  Note that there may be more than one model that is reasonably 

plausible for a particular set of data, especially if the data set is small.  We decided a priori to 
exclude predictor variables from further consideration that occurred only in models whose 
¢AICc weights were less than one-tenth that of the model with the largest weight (see below).  
We used PROC GENMOD in SAS (SAS Institute, Inc. 1996), in conjunction with SAS 
programming code, to produce ¢AICc values and ¢AICc weights for all sets of candidate 
models.  
 
Model Inference 

 
We incorporated model selection uncertainty into model inference as generally described 

by Buckland et al. (1997) and Burnham and Anderson (1998).  That is, we did not select a single 
model from a candidate set and treat it as the “true” model unless the ¢AICc weight was more 
than ten times the next highest weight (our modification).  Rather, we viewed the predictor 
variables contained in models whose ¢AICc weights were more than one-tenth of the largest 
¢AICc weight as forming a composite conceptual model whose parameter estimates were 
computed based on the ¢AICc-weighted average of estimates from relevant models.  This 
arbitrary rule based on proportion of the maximum ¢AICc weight was used to limit the number 
of predictors in our composite conceptual model to those that seemed reasonably plausible for 
the data.   

 
We computed model-averaged estimates of regression coefficients for relevant predictor 

variables via 
 

i

J

i
iw θθ ˆˆ
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=
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where iθ̂  is the estimator of a regression coefficient for a specific predictor variable in model i  

and iw  is the ¢AICc weight that is calculated from the AICc values for the J candidate models 

containing a specific predictor variable (Buckland et al. 1997).  For example, say 3 of the 8 
candidate models contained predictor 1X , which appeared in at least one model with iw  greater 
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than one-tenth of the maximum iw .  The iw  used in the model selection process for assessing 

the plausibility of each model would be based on ¢AICc values from all 8 models, whereas the 

iw  used in model inference for estimating the overall regression coefficient (i.e., θˆ ) for 

1X would only be based on ¢AICc values calculated from the J = 3 models containing 1X .  

Thus, the iw  always were scaled so that they summed to 1.  

 
Variance estimators for regression coefficients also were calculated based on model 

averaging.  There were two sources of uncertainty associated with each model parameter 
estimate: the variance based on a particular model (called conditional variance) and the variance 
due to uncertainty in the selection from a set of models (Buckland et al. 1997).  The overall 

variance (called unconditional variance, ( )θ̂râv ) is calculated as 
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where ( )θθ îrâv  is the conditional variance (i.e., the square of the standard error for regression 

coefficients in regression output) and 
2ˆˆ 





 −θθ i is the variance component due to model 

selection uncertainty.  The iw  were computed based on the J models as described above. 

Technically, estimators should have been perfectly correlated for Eq. 5 to be used so that there 
would be no covariance term (Buckland et al. 1997); however, reasonable results can be obtained 
for a correlation between 0.5 and 1 (K. P. Burnham, pers. commun.).   
 
Stock-Recruitment Models 

 
Deriso et al. (1996) conducted preliminary analyses of spawner-recruit data from 13 

index stocks of spring/summer chinook salmon in part to evaluate which Ricker-type model best 
fit the data, and to use the selected model to generate Ricker a estimates for further analyses (see 
below).  Based on an AIC selection criterion, the best approximating model chosen was the one 
with no spawner measurement error and stock-specific Ricker a values, 

 

ititititiitit mSbaSR ,,,,, lnln εδ +−−++=   ,  (6) 

 

where itR ,  is the Columbia River observed spawning returns (recruitment) for stock i during year 

t, itS ,  is the observed spawners for stock i during year t, ia  is the Ricker a parameter for stock i, 

ib  is the Ricker b parameter for stock i, tδ  is the year-effect parameter for year t, itm ,  is the in-

river passage mortality for stock i during year t, and it ,ε  is the multiplicative residual error 
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(assumed to be distributed as ( )2
,0 εσN ; Deriso et al. 1996).  Ricker a is a measure of 

productivity (recruits-per-spawner) at low numbers of fish, whereas Ricker b is a measure of the 
rate of decrease in productivity as fish numbers increase (Hilborn and Walters 1992).  Hereafter 
we simply refer to these parameters as a and b, subscripted by stock i when appropriate.  The 
year-effect parameter accounts for other factors affecting all stocks such as regional changes in 
terrestrial climate and large changes in survival rates of chinook salmon in the marine 
environment (i.e., this model assumes that large annual variation in ocean mortality is limited to 
the first 2 years of life; Deriso et al. 1996). 
 

The in-river passage mortality is the sum of two components, X  and tµ .  The first 

component is the number of dams encountered by chinook salmon during downstream migration, 
X , which is defined differently depending on year.  During recording years 1952-1969,  this 
component is the actual number of dams encountered between the spawning/rearing area and the 
lowest dam in the system (Bonneville Dam; Fig. 1) inclusive (range = 1-9 dams), whereas during 
1970-1990 it is the number of dams between John Day Dam and Bonneville Dam (i.e., 3).  The 
second component of in-river passage mortality is the net dam passage mortality, tµ , from the 

Snake River stocks to the John Day Dam during 1970-1990 (Deriso et al. 1996).   Thus, through 
1969, the in-river passage mortality is the actual number of dams encountered by chinook 
salmon from each stock during downstream migration (i.e., from 1 to 9 dams), whereas after 
1969 it is the number of dams encountered between John Day Dam and Bonneville Dam (the 
number was fixed at 3) plus the net dam passage mortality from the Snake River stocks to the 
John Day Dam.  

 
Deriso et al’s (1996) choice of the stock-specific Ricker a  model in Eq. 6 was consistent 

with the rationale that, because of the depressed levels of many spring/summer chinook stocks, 

ia  would be better than ib  for evaluating effects of habitat on fish production.  Thus, Eq. 6 was 

used in preliminary analyses by the PATH group to generate estimates of a for each of the 25 
index stocks (which included 12 additional stocks - see below), which then were to be used as 
the response variable in a set of linear regression models containing various combinations of 
class, physiographic and geophysical, and anthropogenic landscape variables (Table 1).  
However, spawner-recruit data from the John Day Middle Fork during 1959-1973 had an 
unusually large influence on parameter estimates, including ia , generated by the model in Eq. 6 

(R. Hinrichsen, pers. commun.).  Therefore, we needed to remove the pre-1974 data from John 
Day Middle Fork and refit at least some of the Ricker-type models considered by Deriso et al. 
(1996) to see if Eq. 6 still would be chosen as the best approximating model.  Further, 
Beamesderfer et al. (1997) and R. Beamesderfer (Oregon Dept. of Fish and Wildlife) provided 
spawner-recruit data for an additional 12 stocks, which afforded us the opportunity to more 
rigorously evaluate the relative importance of the Ricker-type models.  Consequently, as per a 
general suggestion by R. Deriso (Inter-American Tropical Tuna Commission), we considered a 
set of 8 candidate Ricker-type models, including Eq. 6, and 7 others that differed from Eq. 6 by 
the Ricker a  term and/or the in-river passage mortality term (Table 2).  
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Landscape Habitat Models 
 

Habitat data for physiographic, geophysical, and anthropogenic landscape variables 
(Table 1) were obtained from the Interior Columbia Basin Ecosystem Management Project (Lee 
et al. 1997).  These landscape variables are at the HUC6 or subwatershed level of spatial scale, 
which is about 7,800 ha on average within the Columbia Basin (Lee et al. 1997).  Because the 
model containing common a values was the only plausible model given the data (see Results), 

we used )ˆln(ˆˆ
ii ba d −=  (R. Deriso, pers. commun.) instead of iâ  as the response variable in the 

landscape habitat models.  Note that 
1ˆ −id

e  is the estimator of maximum recruitment for the ith 

stock.  To incorporate the uncertainty associated with id̂  into the model parameter estimates,  we 

generated 1000 random id̂ values from a normal distribution with )(mean id  and )var( id , fit 

each of the candidate models 1000 times, and averaged over the 1000 parameter estimates and 
AICc values to obtain single values for each candidate model.  Given 

])(ln[mean)(mean)(mean ii bad −= , we obtained an estimate of )(mean a from the regression 

output.  The method of moments (Wackerly et al. 1996) was used to define ])(ln[mean ib , which 

was lognormally distributed with mean 
2

2

1
ii

e
σµ +

, in terms of the sample mean (im ) and variance 

(
2
is ) of ib .  Thus, 

 

( )22ln
2

1
)ln(2])(ln[mean iiii msmb +−=   , 

 

where im  and 
2
is were obtained from regression output.  The general formula for the variance of 

id is 

 
])ln[,cov(])var(ln[)var()var( iii babad −+= . 

 
 

Because estimates of the second and third terms were not available, we used the delta method 
(Rao 1965, Oehlert 1992, White 1998) to define the variance of id in terms of the variance and 

covariance estimators of a  and ib .  In general, the variance for the function of 2 random 

variables, such as )ln( ii bad −= , may be derived via 
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where jθ  is the jth random variable, 
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 is the column vector of partial derivatives with respect to jθ , and ∑ is the 

variance-covariance matrix of the jθ  (White 1998).  In this case,  a=1θ  and ib=2θ .  Thus, the 

variance of id  is derived using 

 



















∂
∂
∂
∂

•







•








∂
∂

∂
∂

=

i

i

i

ii

i

i

ii
i

b

d
a

d

bba

baa

b

d

a

d
d

)var(),cov(

),cov()var(
)var(   , 

 
which reduces to 
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where estimates for ib , )var(a , )var( ib , and ),cov( iba are obtained from regression output. 

 
After deriving estimators for id  needed to parameterize its distribution for generating 

1000 random values, we constructed a global linear regression model containing various 
physiographic, geophysical, and anthropogenic landscape variables (Table 1) that may have had 
important influences on maximum recruitment.  Habitat data were standardized based on mean 0 
and standard deviation 1 so that magnitude of regression coefficients could be interpretable 
across predictor variables.  We also included a class variable, REGION (Table 1, Fig. 1), as a 
predictor based on preliminary modeling results where iâ was the response variable.  

 
Residual and normal probability plots were generated for the global model to check for 

any serious departures from the model assumptions for linear regression.  If no serious 
departures were detected, we fit the set of class and habitat variables in regression models with 

id̂  as the response variable.  SAS (SAS Institute, Inc. 1996) was used to generate 1000 

id̂ values, fit these to each habitat model, and generate ¢AICc values, ¢AICc weights, estimated 

regression coefficients, and estimated standard errors.  
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We assessed statistical significance of predictor variables by whether the confidence 

intervals for their estimated regression coefficients contained 0, and biological importance by 
whether these intervals contained a range of values of a magnitude that could be considered 
ecologically meaningful (Yoccoz 1991, Gerard et al 1998).  Because choice of confidence level 
is arbitrary, we computed 90%, 95%, and 99% confidence intervals (based on a t-statistic with 

1−n  degrees of freedom) to display a range of confidence levels.   
 
Results 
 

The stock-recruitment model containing a common Ricker a was the only plausible 
model in our set of candidate models for our data.  This was true regardless of inclusion or 
exclusion of pre-1974 spawner-recruitment data from John Day Middle Fork (Table 3).  
Therefore, we treated a and ib  estimates from this model as “true” estimates (i.e., no model-

averaging was necessary).  Interestingly, the model containing ia  (Eq. 6) was highly implausible 

in both cases.   
 
Ricker a estimates were similar between common Ricker a models both with 

])39.0[74.1]EŜ[ˆ( =a  and without ])39.0[85.1]EŜ[ˆ( =a  pre-1974 John Day Middle Fork data.  

Further, an x-y plot of ib  from both models closely followed a straight-line relationship, which 

indicated estimates were similar in size and ordering.  Thus, we used estimates from the common 
Ricker a model with pre-1974 John Day Middle Fork data for generating the response variable 

)ˆ( id for the habitat models (Table 4).   

 
Residual and normal probability plots generated from the global landscape habitat model 

did not reveal any serious violations of assumptions underlying the linear regression model; 
hence, we assumed a linear regression model was appropriate for all subsets of the global model.  
The landscape model containing mean elevation, percent managed forests, and percent USFS 
low impact and wilderness areas, was the most plausible (�AICc = 0.37) model, given the data, 
in the set of models (Table 5).  However, 5 other models had �AICc values that were at least 
one-tenth of �AICc = 0.37, including those containing mean annual precipitation, mean annual 
temperature, and geometric mean road density.  Model-averaged parameter estimates for these 6 
predictor variables showed statistically significant negative relationships between estimated 
maximum recruitment of spring/summer chinook salmon and both percent managed forest (95% 
level) and mean elevation (90% level) (Table 6).  However, we felt only the 90% confidence 
interval associated with percent managed forests contained a range of values with magnitudes of 
biological importance.  Thus, as percent managed forest increased, maximum recruitment (i.e., 
carrying capacity) of salmon decreased. 
 
Discussion 
 

There are a several obvious shortcomings in our analyses.  First, stocks used in our 
analyses were not a random sample from all possible stocks within the Interior Columbia River 
Basin, but rather included those stocks that had adequate numbers of fish and data to generate 
spanwer-recruit data.  Thus, inferences beyond our index streams are problematic.  However, 
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analysis of boxplots generated by physiographic and geophysical variables from index areas 
revealed that they were mostly within the range of values for the lower Columbia, mid-
Columbia, Snake regions (Fig. 1) as a whole.  Therefore, based on landscape habitat variables, 
we assumed that index streams were representative of chinook spawning/rearing streams in the 
entire Interior Columbia River Basin.   

 
Second, inferences based on landscape variables are obviously scale dependent.  That is, 

inferences are limited to the scale of our predictor variables; localized physiographic, 
geophysical and anthropogenic variables that may be affecting maximum recruitment of chinook 
salmon may not be discernible at the landscape scale.  Thus, a negative relationship between 
percent managed forests and maximum recruitment of chinook salmon should be interpreted 
relative to index stocks at the subwatershed level and across the Interior Columbia River Basin 
rather than applying it on a finer scale, such as attempting to draw conclusions based on percent 
managed forests along a particular stream reach.   

 
Third, our estimates of maximum recruitment were not scaled by size of area containing a 

particular stock because there was not a strong correlation (Pearson correlation coefficient = 
0.30) between maximum recruitment and length of perennial streams for each stock area. 
Unfortunately, we did not have estimates of the amount or percentage of spawning/rearing 
habitat (or quality therein) within areas containing each stock, and therefore we assumed that 
length of perennial streams was an adequate surrogate for this metric.  Note that variables based 
on percent composition, like percentage managed forests, would be unaffected by scaling. 

 
Despite their shortcomings, our analyses produced some interesting results.  Given the 

level of uncertainty and noise inherent in our data, detecting any signal at all is in itself 
noteworthy.  This lends support to the idea that, despite the uncertainty involved, broadscale 
analyses can be worthwhile.  Beyond this, one of the more interesting of our results was that the 
stock-recruitment model containing a common Ricker a was the only plausible model for our 
data.  This is surprising because of the apparent soundness of the biological rationale for using 
stock-specific Ricker a values, being a measure of fish production at low stock sizes, to help 
discern differences in spawning/rearing habitats across stocks of chinook salmon that are at 
historically low levels.  However, previous analyses in which a values were used in the response 
variable in landscape habitat models indicated REGION (Table 1; Fig. 1) was the only variable 
that was statistically significant.  This result implies that any differences in a values among 
stocks were overwhelmed by the uncertainty in the region effect.  Conversely, REGION was not 
even contained in a plausible habitat model when maximum recruitment was the response 
variable.  This contrast in results reinforces the importance of model selection to the overall 
modeling process.  Given the implausibility of the stock-specific Ricker a model for these 
spawner-recruit data, we recommend maximum recruitment be used instead of a values in any 
PATH retrospective or prospective analysis of potential effects of broadscale habitat changes on 
productivity of spring/summer chinook in the 25 index stocks.  

 
The negative relationship between maximum recruitment and percentage of forests with 

moderate to high intensity management status warrants consideration of forest management 
practices as a factor to be included in the PATH prospective analyses.  However, a more 
rigorous, experimental management approach (Walters 1986, Walters 1997) is needed to better 
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understand broadscale effects of land management actions on spawning/rearing habitat of 
spring/summer chinook stocks.  There is too much uncertainty associated with the life history 
patterns of anadramous salmon for us to expect a clear answer from correlative data, which is 
why an experimental management approach has been incorporated into the objectives of PATH 
(Marmorek and Peters 1998).  Although this paper does not resolve uncertainties related to 
broadscale habitat features and production of spring/summer chinook, it does provide direction 
for future research that we hope will ultimately answer fundamental questions related to 
conservation of anadromous salmon in the Columbia River Basin. 
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Table 1.  Category, name, and description of landscape variables included in a set of linear regression models 
attempting to predict fish production for 25 index stocks of spring/summer chinook salmon within the Columbia 
River Basin.  Physiographic, geophysical, and anthropogenic variables are at the HUC6 code (subwatershed) level 
(Lee et al. 1997).  The term weighted indicates that the variable was weighted by spatial areas of the subwatersheds 
where a particular stock occurred, i.e., if the stream section stretched over more than one subwatershed.  
 
 
Category 

 
Variable Name 

 
Description 

Class   
 REGION1 Name                                Fourth Hydrologic Field (HUC4)    

Lower Columbia (LC)      17070101-17070106,  
                                          17070201-17070204,  
                                          17070301-17070307 
Mid-Columbia (MC)        17020001-17020016 
Snake (SN)                       17060101-17060107, 17060110, 
                                          17060201-17060210 

Physiographic and 
Geophysical 

  

  
WPPRECIP 

 
Weighted mean annual precipitation (mm) (PRISM model; 
Daly et al. 1994) 

  
WMTEMP 

 
Weighted mean annual temperature (oC) 

  
WELEV 

 
Weighted mean elevation (m) 

  
WERO 

 
Weighted surface erosion index 

 
Anthropogenic 

 
 

 

  
WGEODENS 

 
Weighted geometric mean road density (mi/mi2) 

  
MNG_FOR 

 
Percent USFS and private forests with moderate to high impact 
management practices 

  
MNG_FW 

 
Percent USFS low impact and wilderness areas 

1  See Fig. 1 for a graphical display of the three regions. 
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Table 2.  Formula, number and name, and description of Ricker-type models composing the candidate set that were 
fitted with spawner-recruit data from 25 index stocks of spring/summer chinook salmon in the Columbia River 
Basin.  Water transit time (WTT) is the number of days, on average, required for water to pass from the head of 
lower Granite Dam reservoir to Bonneville Dam during salmon spring migration (Deriso et al. 1996; Fig. 1).  
REGION is described in Table 1; all other terms in the equations are defined in the text.  
 
 
Model Formula 

 
Model Number and Name 

 
Description 

ittititiitit XSbaSR ,,,, lnln εµδ +−−−++=
 

(1) Stock-specific Ricker a Same as Eq. 6; in-river 
passage mortality is the 
actual number of dams 
encountered (X) plus �t. 

ittitititit XSbSR ,,,0, lnln εµδβ +−−−++=
 

(2) Common Ricker a Same as Model (1) except 
Ricker a is assumed to be 
the same across all stocks, 
and is contained in the 
intercept term, �0. 

ittititiitit XSbaSR ,
*

,,, lnln εµδ +−−−++=
 

(3) Stock-specific Ricker a, 
common �t 

Same as Model (1) except 
the net dam passage 
mortality is assumed to be 
the same across all regions, 

*

tµ . 

itititititit mSbSR ,,,,0, lnln εδβ +−−++=  (4) Common Ricker a,  
common �t 

Same as Model (3) except 
Ricker a is assumed to be 
the same across stocks, and 
is contained in the intercept 
term, �0. 

it

ititiitit

WTTREGION

SbaSR

,

,,,

*

lnln

ε
δ

+
−−++=

 
(5) Stock-specific Ricker a, 
REGION*WTT 

Same as Model (1) except 
the in-river passage 
mortality is set equal to the 
interaction between region 
and water transit time. 

it

itititit

WTTREGION

SbSR

,

,,0,

*

lnln

ε
δβ

+
−−++=

 
(6) Common Ricker a, 
REGION*WTT 

Same as Model (5) except 
Ricker a is assumed to be 
the same across stocks, and 
is contained in the intercept 
term, �0. 

itititiitit WTTSbaSR ,,,, lnln εδ +−−++=  (7) Stock-specific Ricker a, 
common WTT 

Same as Model (1) except 
the in-river passage 
mortality is set equal to the 
water transit time. 

ititititit WTTSbSR ,,,0, lnln εδβ +−−++=  (8) Common Ricker a, 
common WTT 

Same as Model (7) except 
Ricker a is assumed to be 
the same across stocks, and 
is contained in the intercept 
term, �0. 
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Table 3.  Model description, AICc values, ¢AICc values, and ¢AICc weights for two sets of Ricker-type models 
generated with and without spawner-recruitment data of spring/summer chinook salmon from pre-1974 John Day 
Middle Fork.  ¢AICc weights represent relative degree of plausiblity for each model given the data.   
 
  

With pre-1974 John Day  
Middle Fork Data 

  
Without pre-1974 John Day 

Middle Fork Data  
 
Model  

 
AICc 

 
¢AICc 

¢AICc 
Weight 

  
AICc 

 
¢AICc 

¢AICc 
Weight 

 
Common Ricker a 

 
2011.78 

 
0 

 
0.96 

  
1970.60 

 
0 

 
>0.99 

 
Stock-specific Ricker a, common �t 

 
2018.13 

 
  6.35 

 
0.04 

  
1984.57 

 
 13.97 

 
<0.01 

 
Common Ricker a, common �t 

 
2028.79 

 
17.01 

 
 <0.01 

  
1985.76 

 
15.16 

 
<0.01 

 
Stock-specific Ricker a 

 
2031.50 

 
19.72 

 
 <0.01 

  
1995.81 

 
25.21 

 
<0.01 

 
Common Ricker a,  REGION*WTT 

 
2201.90 

 
190.12 

 
 <0.01 

  
2162.65 

 
192.05 

 
<0.01 

 
Stock-specific Ricker a,  REGION*WTT 

 
2222.94 

 
211.16 

 
 <0.01 

  
2187.12 

 
216.52 

 
<0.01 

 
Common Ricker a,  common WTT 

 
2252.84 

 
241.06 

 
 <0.01 

  
2208.92 

 
238.32 

 
<0.01 

 
Stock-specific Ricker a, common WTT 

 
2257.81 

 
246.03 

 
 <0.01 

  
2213.34 

 
242.74 

 
<0.01 
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Table 4.  Name, region, and point estimates (estimated standard errors) for id , Ricker a , Ricker ib , and 

covariance of Ricker a  and ib , as generated from the stock-recruitment model containing a common Ricker a, for 

25 index stocks of spring/summer chinook salmon in the Columbia River Basin.  Note that  )ˆln(ˆ ˆ
ii bad −= , 

where 
1ˆ −id

e  is the estimator of maximum recruitment for the ith stock. 
 
Stock Name Region 

id̂  ( iEŜ ) â ( EŜ ) ib̂ ( iEŜ )1 )ˆ,ˆv(ôC iba 1 

 

Bear Valley/Elk Creek 

 

SN 

 

8.97 (0.43) 

 

1.74 (0.39) 

 

0.74 (0.13) 

 

-0.001 

Big Sheep/Lick Creek SN 7.31 (0.42) 1.74 (0.39) 3.88 (0.58) -0.003 

Catherine Creek SN 8.53 (0.42) 1.74 (0.39) 1.14 (0.18) -0.001 

Entiat River MC 7.98 (0.47) 1.74 (0.39) 1.99 (0.41) -0.025 

Grande Ronde River SN 8.20 (0.43) 1.74 (0.39) 1.60 (0.30) -0.002 

Imnaha River SN 8.87 (0.41) 1.74 (0.39) 0.81 (0.10) -0.001 

John Day Main Stem LC 7.56 (0.38) 1.74 (0.39) 3.02 (0.53) 0.053 

John Day Middle Fork LC 8.07 (0.39) 1.74 (0.39) 1.81 (0.33) 0.026 

John Day North Fork/Granite LC 9.17 (0.38) 1.74 (0.39) 0.60 (0.10) 0.010 

Johnson Creek SN 7.76 (0.42) 1.74 (0.39) 2.47 (0.36) -0.002 

Klickitat River LC 7.64 (0.38) 1.74 (0.39) 2.82 (0.63)  0.079 

Lemhi River SN 9.02 (0.43) 1.74 (0.39) 0.70 (0.12) -0.0005 

Lookingglass Creek SN 7.71 (0.42) 1.74 (0.39) 2.59 (0.43) -0.002 

Lostine River SN 7.80 (0.44) 1.74 (0.39) 2.83 (0.47) -0.003 

Marsh Creek SN 8.32 (0.43) 1.74 (0.39) 1.42 (0.26) -0.001 

Methow River MC 9.66 (0.52) 1.74 (0.39) 0.38 (0.11) -0.007 

Minam River SN 8.43 (0.42) 1.74 (0.39) 1.26 (0.20) -0.001 

Poverty Flat SN 8.81 (0.42) 1.74 (0.39) 0.86 (0.13) -0.0005 

Secesh River/Lake Creek SN 7.52 (0.42) 1.74 (0.39) 3.14 (0.48) -0.002 

Sulphur Creek SN 8.00 (0.43) 1.74 (0.39) 1.96 (0.36) -0.002 

Upper Big Creek SN 7.39 (0.42) 1.74 (0.39) 3.58 (0.61) -0.002 

Upper Valley Creek SN 7.51 (0.43) 1.74 (0.39) 3.19 (0.58) -0.003 

Warm Springs River LC 9.98 (0.74) 1.74 (0.39) 0.33 (0.25) 0.028 

Wenaha River SN 8.84 (0.44) 1.74 (0.39) 0.84 (0.18) -0.001 

Wenatchee River MC 9.72 (0.45) 1.74 (0.39) 0.35 (0.06) -0.003 

1  Estimates should be divided by 1000 to adjust for rescaling of ib̂ . 
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Table 5. Predictor variables, AICc values, ¢AICc values, ¢AICc weights, and proportions of largest weight for the 
set of candidate models attempting to link maximum recruitment of spring/summer chinook salmon with landscape 
variables.  AICc-related values were averaged over 1000 models from 1000 randomly-generated response variables 

(i.e., id̂ ).  ¢AICc weights represent degree of plausibility of each model given the data.  Proportion of a given 

model ¢AICc weight to the largest one was used as a guideline for selecting which predictor variables (Table 1) to 
include in the composite model (Table 6). 
 
 
Predictor Variables 

 
AICc 

 
¢AICc 

¢AICc 
Weight (wi) 

 Proportion 
of Largest wi 

 
WELEV, MNG_FOR, MNG_FW 

 
65.27 

 
0 

 
0.37 

 
1.00 

 
WELEV, WGEODENS, MNG_FOR, MNG_FW 

 
67.51 

 
2.24 

 
0.12 

 
0.32 

 
WPRECIP, WELEV, MNG_FOR, MNG_FW 

 
67.54 

 
2.27 

 
0.12 

 
0.32 

 
MNG_FOR, MNG_FW 

 
68.00 

 
2.73 

 
0.09 

 
0.24 

 
WMTEMP, WELEV, WGEODENS 

 
68.53 

 
3.26 

 
0.07 

 
0.19 

 
WPPRECIP, WELEV 

 
69.27 

 
4.00 

 
0.05 

 
0.14 

 
WPPRECIP, WMTEMP 

 
69.96 

 
4.69 

 
0.03 

 
0.08 

 
REGION 

 
69.97 

 
4.70 

 
0.03 

 
0.08 

 
WGEODENS 

 
70.22 

 
4.95 

 
0.03 

 
0.08 

 
WPPRECIP, WERO, MNG_FOR 

 
70.40 

 
5.13 

 
0.03 

 
0.08 

 
WPPRECIP, WERO 

 
71.21 

 
5.94 

 
0.02 

 
0.05 

 
REGION, WGEODENS 

 
71.41 

 
6.14 

 
0.02 

 
0.05 

 
WPPRECIP, WMTEMP WELEV, WERO 

 
73.34 

 
8.07 

 
        <0.01 

 
    <0.01 

 
WPPRECIP, WERO, WGEODENS 

 
73.52 

 
8.25 

 
        <0.01 

 
    <0.01 

 
WPPRECIP, WERO, WGEODENS, MNG_FOR 

 
73.64 

 
8.37 

 
        <0.01 

 
    <0.01 

 
REGION, WPPRECIP, WMTEMP, WELEV,  
WERO, WGEODENS, MNG_FOR, MNG_FW  
(Global Model) 

 
 
 

88.79 

 
 
 
       23.52 

 
 
 
        <0.01 

 
 
 
    <0.01 
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Table 6.  Model-averaged estimate of standardized regression coefficient and standard error, and lower and upper 
limits of various confidence intervals for parameters contained in one or more candidate models (Table 5) with 
¢AICc weights within more than 10% of the largest ¢AICc weight.  Confidence intervals not containing 0 are 
statistically significant at the associated level of confidence. 
 

  
90% CI 

 
95% CI 

 
99% CI 

 
 
Model 
Parameter 

 
Stdzed. 
Regr. 
Coeff. 

Std. 
 Error 

 

Lower 
Limit 

Upper 
Limit 

 
 

Lower 
Limit 

Upper 
Limit 

 

Lower 
Limit 

Upper 
Limit 

 
INTERCEPT 

 
8.34 

 
0.16 

  
8.07 

 
8.61 

  
8.01 

 
8.67 

  
7.89 

 
8.79 

 
WPPRECIP 

 
  -0.17 

 
0.18 

  
  -0.48 

 
0.14 

  
  -0.54 

 
0.20 

  
  -0.67 

 
0.33 

 
WMTEMP 

 
0.13 

 
0.31 

  
-0.40 

 
0.66 

  
-0.51 

 
0.77 

  
-0.74 

 
1.00 

 
WELEV 

 
  -0.38 

 
0.19 

  
  -0.71 

 
  -0.05 

  
  -0.77 

 
0.01 

  
  -0.91 

 
0.15 

 
WGEODENS 

 
  -0.25 

 
0.23 

  
  -0.64 

 
0.14 

  
  -0.72 

 
0.22 

  
  -0.89 

 
0.39 

 
MNG_FOR 

 
  -0.51 

 
0.22 

  
  -0.89 

 
  -0.13 

  
  -0.96 

 
  -0.06 

  
  -1.13 

 
0.11 

 
MNG_FW 

 
  -0.24 

 
0.22 

  
  -0.62 

 
0.14 

  
  -0.69 

 
0.21 

  
  -0.86 

 
0.38 

 
  


